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Photoinduced Charge Separation
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Capturing Photoexcited Structures with Pulsed X-rays from Synchrotron Sources
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Molecular Structure Determination in Disordered Media
X-ray Absorption Spectroscopy (XANES and XAFS)
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Molecular Structure Determination in Disordered Media
XANES Features and Oxidation States/Coordination Geometry
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Challenges in Pump-probe XAFS
Mismatch in the absorption coefficients for optical photons and x-ray 
photons (e.g. >102:1) 
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Challenges in Pump-probe XAFS
Non-zero background XAFS measurements require a high fraction of excited 

species (i.e.>10%) to be created which prefer low concentrations (i.e. <10-3

M), and high laser pulse energies, whereas XAFS measurements prefer high 
concentrations.
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Challenges in Pump-probe XAFS
Mismatch in laser and x-ray pulse repetition rates

3.68µs
X-ray Pulse Train

Time

500µs
Laser Pulse Train

Time

A factor of 2,700 or more reduction of the x-ray photon flux!

Actual usable x-ray photon flux for the probe ~ 108/s.0.1%BW at the sample. 



Transmission vs. Fluorescence Detection
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Challenges in Pump-probe XAFS
Extracting the excited state spectrum from a mixture of different states
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Experimental Setup for Pump-probe X-ray Absorption
Beamline 11ID, Advanced Photon Source, Argonne National Laboratory

Laser Hutch

X-ray Hutch 



Photodissociation of NiTPP-piperidine2
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Science 292, 262 (2001)
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XANES Evidence for Square-planar NiTPP 
Generated by the Laser Pump Pulse

Science, 292, 262 (2001)
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XAFS Evidence for Square-planar NiTPP
Generated by the Laser Pump Pulse
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Probing Metal-to-Ligand Charge Transfer (MLCT) 
State Structures of  Transition Metal Complexes
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The MLCT Excited State of 
Cu(I)bis(dimethylphenanthroline) complex

[CuI(dmp)2]+ → [CuII(dmp-)(dmp)]+

3d10 3d9

hv

e-

[RuII(bpy)3]+2 → [RuIII(bpy-)(bpy)2]+hv

Molecular machines

J.-P. SAUVAGE

Acc. Chem. Res. (1998)

Solar energy conversion/photoinduced electron transfer
G. J.  Meyer and coworkers, 1999
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Previously proposed excited state reaction mechanisms:

[CuI(dmp)2]+ + hν→ 1[CuII(dmp)(dmp)•–]+* (FC) (1)

1[CuII(dmp)(dmp)•–]+* (FC) → 3[CuII(dmp)(dmp)•–]+* (flattened) (2)

[CuII(dmp)(dmp)•–]+*(flattened) + Q→ [CuII(dmp)(dmp)•–Q]+*(“Exciplex”) (3)

[CuII(dmp)(dmp)•–Q]+* (“Exciplex”) → [CuI(dmp)2]+ + Q (coordinating solvent)   (4)  
[CuII(dmp)(dmp)•–]+*(flattened) → [CuI(dmp)2]+ (non-coordinating solvent)

Questions to be answered:

1. What are excited state dynamics on ultrafast time scales? (flattening, isc, etc.)
2. What are structural origins for solvent dependent behavior of the MLCT state?
3. What are the structure and property relationships in the MLCT state and their 

impact on photoinduced electron and energy transfer reactions?

Dynamics of the MLCT state -- Ultrafast optical spectroscopy
Structures of the MLCT state -- Pump-probe XAFS and DFT calculations

J. Am. Chem. Soc. (2002) 124,10861;(2003) 125,7022.
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Ultrafast excited state dynamics of 
[Cu(I)(dmp)2]+ in acetonitrile
(strongly coordinating solvent)

f(t)= A1e-t/τ1+A2e-t/τ2+A3e-t/τ3

τ1 = 500 – 700 fs
τ2 = 10 – 20 ps
τ3 = 2 ns

J. Am. Chem. Soc., 125 7022 (2003).

EA rise →blue shift, spectral narrowing → decay
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Excited State Absorption Anisotropy in Acetonitrile
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Excited State Transition Energy 
vs. Dihedral Angle
(collaboration with Coppens et al.)

Shinozaki & Kaizu
Bull. Chem. Soc. Japan
(1994) 67, 2435.

Triplet State
dha = 68º

Ground State
dha = 89º



13-16 ps fluo. lifetime

Z. A. Siddique, Y. Yamamoto, T. Ohno, K. 
Nozaki, Inorg. Chem. (2003)



Photoexcitation and Decay Pathways for Cu(I)(dmp)2
+

Parallel excited state pathways
500 -700 fs: Flattening
10-20 ps: ISC (solvent viscosity independent)

2-100 ns: lifetime of 13A
Probed by X-ray pulse

<1 ps

13 ps

Z. A. Siddique, Y. 
Yamamoto, T. Ohno, K. 
Nozaki, Inorg. Chem. (2003)
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Pump-probe XANES Spectra of [CuI(dmp)2]+, t=“0”
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In both solvents, ~20% MLCT state was created with Cu(II)-character, and the Cu coordination changed from 
tetrahedral to penta-coordinated geometry, even though acetonitrile was considered a strongly coordinating 
solvent and toluene, a non-coordinating solvent.  



XAFS Spectra of Laser Excited [CuI(dmp)2]+
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XAFS Spectra of Laser Excited [CuI(dmp)2]+
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Structure Parameters of the Nearest Neighbors 
in the Ground and MLCT state Cu(dmp)2

+
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Penta-coordinated Cu(II)* in the MLCT State

vs.

Axial RCu-X

4.12Å
3.64Å
3.37Å

2.57Å
2.70Å

Smith et al.
J. Am. Chem. Soc.
(1985),107,5945.

Weakly 
interacting

Strongly 
interacting

R(avg) = 2.03ÅR(avg) = 2.11Å

A relatively large range of the Cu-axial distances could cause the attenuation of 
1s to 4pz transition peak.  The difference of the average Cu-ligand distance for the 
MLCT state in toluene and acetonitrile indicated weakly and strongly interacting 
complexes, respectively.
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Exciplex Formation of Photoexcited Cu(II)OEP
Light

THF

Light

Toluene

Chen, Shaw, Liu, Jennings, Attenkofer, Chemical Physics. 299, 215-223 (2004).



Exciplex Formation of Photoexcited Cu(II)OEP
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Excited State Dynamics of Cu(II)OEP in Different Solvents
THF: τ = 0.4-0.5 ns; Toluene: τ =120 ns
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Structural Evidence of “Exciplex” Formation
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Structural Evidence of “Exciplex” Formation
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Summary and Outlook
• Thermally equilibrated excited state structures of metal complexes can be 

captured in dilute solutions with a time resolution of 30-100 ps using x-ray 
pulses from synchrotron sources;

• The structural changes due to photoinduced electron transfer in metal 
complexes are successfully shown in both XANES and XAFS spectral
regions; 

• The structural information obtained by pump-probe XAFS starts to provide 
new insights into the structural property relationships of the short-lived 
excited states, which will guide the synthesis of molecules with desirable 
properties;

• The combination of time-resolved local and long-ranges structural 
information using pump-probe XAFS and S/WAXS technique provides 
unique potential in supramolecular photochemistry; 

• The combination of ultrafast optical and x-ray techniques with theoretical 
calculation will break new frontier in understanding fundamental
photochemistry.
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Dream 1: Faster Dynamics
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Dream 2: Lager Scale Dynamics
XAFS+S/WAXS

Combination of XAFS and WAXS/SAXS (Collaboration with David Tiede)
Static and timeStatic and time--resolved Xresolved X--ray characterizationray characterization of photoexcited
nanoparticles and molecular assemblies ensembles.  

WAXS/SAXS – shape, size, solvation and molecular motion, real-
time monitoring of self-assembly pathways

XANES – metal oxidation state, coordination environment,

XAFS – bond distances, coordination numbers.



Dream 3: More x-ray photons/pulse·second
Current:

Wiggler beamline: 90,000 photon/pulse at sample
Nine-element Ge element: 200-600 ct/s eV Gated with 1kHz laser pulse
Good XAFS spectra: 100,000 ct/pt X 400 pt
100,000 ct /20-60 ct/s pt X 400 pt = 18 – 55 hours for each XAFS spectrum

Desirable:

Undulator beamline: 10-50 times higher in photon flux will shorten the data 
acquisition time drastically!

LCLS: Much much better

Concerns: New types of detectors, sample damage



Dream 4: Intense Coherent Ultrafast X-rays
Keith Nelson on X-ray NLO experiments
Shaul Mukamel’s talk on X-ray NLO theory

Transient X-ray gratings
X-ray photon echo
Coherent X-ray scattering and nuclear displacements 

in non-crystalline materials 
X-ray Speckles
Etc.

Dream 5: Intense nm 
focused x-ray beam
Single nanoparticle structure 
and dynamics



Acknowledgement

ANL

Wighard J.H. Jäger Guy Jennings David J. Gosztola 
Tao Liu Anneli Munkholm Jan P. Hessler 
George B. Shaw Klaus Attenkofer

David M. Tiede

Advanced Photon Source, Sectors 11 & 12 personnel

Other Institutions

Gerald J. Meyer Group (Johns Hopkins Utniversity)
Jonathan S. Lindsey Group (North Carolina State University)
Michael D. Hopkins Group (U. of Chicago)
Philip Coppens Group (SUNY Buffalo)

Basic Energy Science, Chemical Sciences, U.S. DOE
New Facility Initiative Grant FY 96-98, U.S. DOE


	Toward Ultrafast Excited State Molecular Structure Determination Using Pulsed X-rays
	Molecular Structure Determination in Disordered MediaX-ray Absorption Spectroscopy (XANES and XAFS)
	Molecular Structure Determination in Disordered Media XANES Features and Oxidation States/Coordination Geometry
	Challenges in Pump-probe XAFS
	Transmission vs. Fluorescence Detection
	Photodissociation of NiTPP-piperidine2
	XANES Evidence for Square-planar NiTPP Generated by the Laser Pump Pulse
	XAFS Evidence for Square-planar NiTPP Generated by the Laser Pump Pulse
	Probing Metal-to-Ligand Charge Transfer (MLCT) State Structures of  Transition Metal Complexes
	The MLCT Excited State of Cu(I)bis(dimethylphenanthroline) complex
	XANES spectra of CuI/II(dmp)2+/++ from in-situ electrolysis
	Pump-probe XANES Spectra of [CuI(dmp)2]+, t=“0”
	XAFS Spectra of Laser Excited [CuI(dmp)2]+
	XAFS Spectra of Laser Excited [CuI(dmp)2]+
	Structure Parameters of the Nearest Neighbors in the Ground and MLCT state Cu(dmp)2+
	Penta-coordinated Cu(II)* in the MLCT State
	Summary and Outlook

